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ABSTRACT
Maximizing sales and revenue is an important goal of online com-
mercial retailers. Recommender systems are designed to maximize
users’ click or purchase probability, but often disregard users’ even-
tual satisfaction with purchased items. As result, such systems
promote items with high appeal at the selling stage (e.g. an eye-
catching presentation) over items that would yield more satisfaction
to users in the long run. This work presents a novel unified model
that considers both goals and can be tuned to balance between
them according to the needs of the business scenario.

We propose a multi-task probabilistic matrix factorization model
with a dual task objective: predicting binary purchase/no purchase
variables combined with predicting continuous satisfaction scores.
Model parameters are optimized using Variational Bayes which al-
lows learning a posterior distribution over model parameters. This
model allows making predictions that balance the two goals of max-
imizing the probability for an immediate purchase and maximizing
user satisfaction and engagement down the line. These goals lie at
the heart of most commercial recommendation scenarios and en-
abling their balance has the potential to improve value for millions
of users worldwide. Finally, we present experimental evaluation
on different types of consumer retail datasets that demonstrate
the benefits of the model over popular baselines on a number of
well-known ranking metrics.
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1 INTRODUCTION
Much of the early literature in the recommendation system commu-
nity has been devoted to learning models from explicit satisfaction
scores such as the ratings available in the Netflix prize competition.
Since those early days, many have observed that such explicit rat-
ings are often not available in practice and most of the information
for user preference is obtained by collecting implicit binary signals
such as click/no click, purchase/no purchase or pairwise prefer-
ences [15, 21, 26]. However, by considering only binary signals, the
system does not take into account the ultimate satisfaction of users
with the consumed item.

While explicit ratings are often unavailable, satisfaction scores
can often be implicitly extracted. With the increased abundance of
telemetry data, a rich signal of customer preference has become
available. One example of such a scenario is online video streaming,
where the amount of time a customer spends watching a movie is
recorded. In a music streaming scenario, we can track the number
of times a user listens to the same song or artist (or alternatively
the number of times that song/artist is skipped when it appears
in a randomly generated playlist). In software application (app)
recommendations, such as those in the Windows Store, we can
track the amount of time a user spends engaging with the app or the
number of times the app has been launched. Another notable type of
implicit satisfaction score is dwell time in online recommendation
experiences (studied in [3, 35, 36]). Thus, a continuous implicit signal
is generated that gives a finer granularity of user preference than
binary interactions.

In the examples above, the continuous preference signals encode
a customer’s satisfaction and engagement with the purchased items.
Utilizing such signals enables systems that directly model and pre-
dict the customer’s engagement at the consumption stage beyond
the initial purchase. It has the double benefit of allowing online
retailers to increase revenue while presenting items that users are
more likely to enjoy.

This paper proposes a model that combines continuous and bi-
nary implicit signals. To our knowledge, models and algorithms
for considering implicit continuous signals have not been studied
in the literature of recommendation systems. Beyond the obvious
business advantage of recommending satisfactory items, our em-
pirical evaluation demonstrates that in some cases the additional
information on user engagement and satisfaction can even yield
improved performance across standard ranking metrics.

This paper makes the following contributions: (1) we propose a
model that combines the implicit continuous score of user prefer-
ence with a binary consumption signal using a multi-task likelihood
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function. This model enables balancing immediate purchase proba-
bilities with implicit satisfaction scores. (2) we derive a computa-
tionally tractable algorithm for learning the model parameters from
data, applying the algorithmic framework of Variational Bayes,
(3) we evaluate the proposed approach empirically over several
datasets, both proprietary and public.

The remainder of this paper is organized as follows: Section 2
discusses related work, Section 3 describes the model and algorithm.
Section 4 presents the experimental setup and results, and finally
Section 5 provides our conclusions.

2 RELATEDWORK
Recommender systems have great potential to help users navigate
the long-tail of retail catalogs to locate items relevant to themselves.
However, it has been noticed that improved performance on the
standard collaborative filtering task often does not translate into
increased user satisfaction [5, 14, 19]. Hence, in this workwe present
a model that attempts to learn both a binary probability for an
item to be clicked or purchased as well as learning the eventual
satisfaction that the user will get from that item (if purchased).

The work is motivated by the paradigm of multi-task learning
[4, 28] applied to Collaborative filtering based on Matrix Factor-
ization. Initial Matrix Factorization (MF) models were based on
a regression objective parameterized by low-dimensional latent
vectors corresponding to each user and item. These parameters
are usually optimized by way of minimizing a squared loss func-
tion using either stochastic gradient descent (SGD), or alternating
least squares (ALS) [17]. The MF objective can also be cast as a
Bayesian probabilistic model with different likelihood functions
[12, 16, 22, 24, 29, 34].

The lack of explicit data in collaborative filtering has led to con-
centrated study of models for implicit data [10, 13, 21, 26]. Training
data is often binary such as click/no click or purchase/no purchase
[7–9, 25, 31–33]. The implicit data setup is sometimes referred to
as a ‘One-Class’ problem [16, 24, 27, 37] owing to the fact that
users are unlikely to interact with items they have negative prefer-
ence for. Accounting for the (non-observed) negatives makes the
implicit data problems computationally harder. Previous models
have either based on the “whole data approaches” [10], which give
a small weight to every unobserved item, or based on negative
sampling approaches [23, 24, 26]. The model in this paper follows
a negative sampling approach very similar to the one in [24], while
comparisons with [26] and [10] are discussed in Section 4.

3 OUR APPROACH
Our objective in this work is to construct a model that considers
both the probability for a user to click or purchase an item as well
as a continuous valued satisfaction score (measured following the
purchase). For example, in the case of Xbox games, we learn the
probability to purchase a game together with the time the user
would play it if she were to buy the game. In this case, the time
the user plays a game is a proxy for her satisfaction. Obviously, the
choice of satisfaction score is not limited to engagement time and
can be chosen in-order to satisfy different business needs. In the
interest of generality, henceforth we simply consider two types of
observations: a binary observation and a continuous satisfaction

score. As suchwe devise amulti-task objective composed of a binary
term and a continuous term where the relative importance of each
term is determined by a tunable hyperparameter. Formalized this
way, the model generalizes both binary matrix factorization as well
as continuous (regression) matrix factorization. In what follows we
give a formal description of the model.

Definitions and Notation
We distinguish matrices and vectors from scalars by denoting them
with bold letters. We capitalize when denoting matrices and use
minuscule letters for vectors, e.g., X is a matrix , x is a vector and
both x and X denote scalars. We denote an expectation over a
random variable using angle brackets e.g., ⟨a⟩ is the expectation
of the random vector a. We reserve special indexing letters for
distinguishing users from items: for users we use the letterm and
for items the letter n. The total number of users in the model isM
and the total number of items is N .

The multi-task model considers two datasets: a dataset for bi-
nary observations denoted Db and a dataset for continuous scores
denotedDs . Each dataset consists of user/item tuples and an obser-
vation. A binary observation of userm to item n in Db is denoted
by rmn . A continuous observation of the same user to the same
item in Ds is denoted by smn . Namely, the datasets consist of the
following tuples: (m,n, rmn ) ∈ Db and (m,n, smn ) ∈ Ds . Finally,
we denote by Ds

m and Db
m all the observations in datasets Ds and

Db that relate to userm, respectively. Similarly, we denote by Ds
n

and Db
n all the observations in datasets Ds and Db that relate to

item n, respectively.

3.1 Intuition and Overview
Our model is a Bayesian multi-task model based on matrix factoriza-
tion (Section 3.2). Model parameters are estimated using Variational
Bayes inference [2]. Namely, we find the best approximation to the
posterior distribution given the observed training data. This is in
contrast to Bayesian approaches that only seek a point-estimate
of the parameters which maximize the posterior (or non-Bayesian
models that minimize a loss function with respect to the parame-
ters). In complex models, such as the one presented in this work,
the posterior distribution is intractable. In Variational Bayes we
seek a factorized approximation distribution that minimizes the
Kullback-Leibler divergence from the true posterior (Section 3.3).
Optimization proceeds by an iterative algorithm which optimizes
each factor’s parameters in turn. We present full update equations
in Section 3.4. With the estimated posterior distribution at hand,
we can make predictions considering all possible parameter config-
urations (Section 3.6).

3.2 Model Formalization
For each userm and item n, we denote by um,vn ∈Rd the d dimen-
sional latent user and item vector parameters, respectively. Simi-
larly, the scalar bias of each user and item is denoted by bm and
bn , respectively. The model includes two additional scalars to allow
the location and scale of the distribution of score values to move
away from that of the binary observations: ψ for location, and κ
for scale. We collectively denote all the model’s parameters by:

θ={{um }Mm=1, {vn }
N
n=1, {bm }Mm=1, {bn }

N
n=1,κ,ψ }. (1)
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3.2.1 Likelihood and Priors. We model the joint probability of a
single paired binary observation rmn and score smn as a factorized
product with mixing hyper-parameter γ as follows:

p(smn,rmn |um,vn,bm,bn,κ,ψ )= (2)

Bern
(
rmn ;σ

(
γ (u⊤

mvn+bm+bn)
) )

·N

(
smn ;

(
κ(u⊤

mvn+bm+bn)+ψ
)
,((1−γ )β )−1

)
=

σ
(
γ (u⊤

mvn+bm+bn)
)rmn

·

[
1−σ

(
γ (u⊤

mvn+bm+bn)
) ]1−rmn

·

√
(1−γ )β
2π exp

{
−

(1−γ )β
2

[
smn−

(
κ(u⊤

mvn+bm+bn)+ψ
) ]2}

where σ (x )= 1
1+e−x is the sigmoid function. This form arises naturally

by modeling

p (rmn , smn | θ ) ∝ f (rmn | θ )γ · д (smn | θ )(1−γ ) ,

where we choose f (rmn | θ ) = Bern
(
rmn ;σ

(
u⊤mvn + bm + bn

) )
and д(smn | θ ) = N

(
smn ;κ

(
u⊤mvn + bm + bn

)
+ψ , β−1

)
to be

Bernoulli and Gaussian distribution density functions, respectively.
The hyper-parameter γ controls the importance of binary observa-
tion with respect to the continuous observation: when γ = 1 we
are left with just the binary term and when γ = 0 we have only
the regression term. Hence the model naturally generalizes both
binary and regression matrix factorization.

The use of shared parameters for both the binary and the contin-
uous terms adds structure to the model which assumes a positive
correlation between the two components of the likelihood. How-
ever, the assumption that these shared components are distributed
identically is too strong. One distribution may need to have a differ-
ent dynamic range and be centered around a different mean than
the other. Therefore, parameters κ andψ (collectively referred to as
stretch parameters) allow the location and scale of the distribution
of score values to vary from that of the binary component of the
likelihood. Without these additional parameters, one would need
to find a non-trivial normalization on the score values in the data
so that their distribution would match that of the latent parameters
that best describe the binary component or else suffer degradation
in accuracy.

We define simple Gaussian priors on all parameters as follows:

p(um |αu )=N(um ;0,α−1
u Id ), p(vn |αv )=N(vn ;0,α−1

v Id ), (3)

p(bm |αb )=N
(
bm ;0,α−1

bm

)
, p(bn |αb )=N

(
bn ;0,α−1

bn

)
,

p(κ |ακ )=N(κ ;1,α−1
κ ), p(ψ |αψ )=N

(
ψ ;0,α−1

ψ

)
,

where Id is a d dimensional identity matrix and the α ’s are precision
hyper-parameters. All model hyper-parameters are collectively
denoted by H={γ ,αu ,αv ,αbu ,αbi ,ακ ,αψ ,β }. Note that all the priors
are normally distributed with zero mean except κ which has mean 1.

3.2.2 The Posterior Distribution. Our goal is to find the posterior
distribution:

p(θ |D,H) ∝ p(θ,D |H)=p(D |θ,H)p(θ |H)= (4)∏
(m,n,rmn )∈Db

Bern
(
rmn ;σ

(
γ (u⊤

mvn+bm+bn)
) )

∏
(m,n,smn )∈Ds

N

(
smn ;

(
κ(u⊤

mvn+bm+bn)+ψ
)
,((1−γ )β )−1

)

·

M∏
m=1

N(um ;0,α−1
u Id )·N

(
bm ;0,α−1

bu

)
·

N∏
n=1

N(vn ;0,α−1
v Id )·N

(
bn ;0,α−1

bv

)
·N(κ ;1,α−1

κ )·N
(
ψ ;0,α−1

ψ

)
.

Estimating the parameters of this posterior is computationally
intractable. Hence, we turn to Variational Bayes in order to approx-
imate it.

3.3 Variational Bayes
We seek an approximate distribution q (θ ) that will minimize the
Kullback-Leibler divergence from the true posterior:

DKL (q(θ ) ∥p(θ |D,H))
def
=
∫
q(θ ) log q(θ )

p(θ |D,H)
dθ . (5)

This divergence can be rewritten in terms of the model’s marginal
log-likelihood and the variational free energy F[q(θ )] (see [2]):

DKL (q(θ )∥p(θ |D,H))+F[q(θ )]=logp(D |H), (6)

where the variational free energy is F[q(θ )]def=
∫
q(θ ) log p(θ ,D|H)

q(θ ) dθ .
From the expression above we can see that minimizing the Kullback-
Leibler divergence is equivalent to maximizing the variational free
energy F[q(θ )]. Henceforth, our objective is to maximize F[q(θ )]

with respect to the approximate posterior distribution q(θ ).

3.3.1 Logistic Bound. Before we proceed, we notice that the joint
distribution in (4) includes Gaussian priors which are not conjugate
with respect to the sigmoid functions used in the likelihood. This
lack of conjugacy precludes closed form parametric solutions to
the factors of the approximate posterior distribution. Therefore,
we apply the Jaakola-Jordan logistic bound [11] to replace these
sigmoid functionswith a “squared exponential” term forming a tight
lower bounds on F[q(θ )]. The Jaakola-Jordan introduces additional
variational parameter ξm,n > 0 to bound each binary observation
(m,n,rmn )∈D

b as follows:

σ (γa)r · [1 − σ (γa)]1−r ≥ (7)

σ (ξ ) exp{γra −
1
2
(γa + ξ ) − λ(ξ )(γ 2a2 − ξ 2)},

wherewe have dropped subscriptsm andn for clarity, λ(ξ )def= 1
2ξ [σ (ξ )−

1
2 ] and adef

=u⊤
mvn+bm+bn is used for simplicity. By maximizing the

ξm,n values, this bound becomes a tight lower bound (see [11]) that
can be used to replace the sigmoid terms in the likelihood with
"Gaussian like" exponentiated quadratic terms.

Using the inequality in (7) we substitute all the sigmoids in
p(θ,D |H) to get pξ (θ,D |H). We now have a lower bound on the the
variational free energy F[q(θ )]≥Fξ [q(θ )]

def
=
∫
q(θ ) log

pξ (θ ,D|H)

q(θ ) dθ , and
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Fξ [q(θ )] becomes our new maximization objective. Next, we explain
the optimization procedure.

3.3.2 Optimization Procedure. We approximate the posterior dis-
tribution with the following factorized approximation function q(θ )

:

q(θ )=
∏M
m q(um )·

∏N
n q(vn )·

∏M
m q(bm )·

∏N
n q(bn )·q(κ)·q(ψ ). (8)

For the sake of uncluttered notation, we overload the letter q in
Equation (8) above. q(·) denotes both the entire approximate poste-
rior and each factor of the posterior. The different meanings of q
can be distinguished by the argument to the function.

Optimization of Fξ with respect to q(θ ) is achieved through co-
ordinate ascent in the function space of the variational distribu-
tions. Namely, we compute the functional derivative ∂Fξ /∂q with
respect to each distribution q in (8). Setting these derivatives to
zero, together with a Lagrange multiplier constraint to make each
q integrate to one, we get the update steps for each q distribution.
The Jakkola-Jordan bound in (7) ensures that the factors in Equa-
tion (8) takes the form of a Gaussian distribution parameterized
by a mean and a covariance. We iteratively update the q distribu-
tions, where each update increases our objective Fξ with respect to
one parameter in θ . Since Fξ is bounded from above by logp(D |H),
the optimization is guaranteed to converge. Next, we present a
pseudocode for the optimization procedure.

Algorithm 1: Learn the parameters of the approximate
posterior (Equation 8) from data

repeat
Add Negative samples to training data (see section 3.5)
form = 1 . . .M do

Update q(um ) parameters µum and Σum using Equation (9)∗
end for
for n = 1 . . . N do

Update q(vn ) parameters µvn and Σvn using Equation (10)∗
end for
form = 1 . . .M do

Update q(bm ) parameters µbm and σ 2
bm

using Equation (11)∗

end for
for n = 1 . . . N do

Update q(bn ) parameters µbn and σ 2
bn

using Equation (12)∗

end for
Update q(κ) parameters µκ and σ 2

κ using Equation (13)
Update q(ψ ) parameters µψ and σ 2

ψ using Equation (14)

until convergence of F [q(θ )]
(*) Whenever ξm,n appears in the update equation calculate it “on the fly” using Equation (15)

3.3.3 Pseudocode. Algorithm 1 gives the pseudocode for learning
the approximate posterior parameters 1. The update equations,
described in Section 3.4, allow for independence between all user
parameters given the item parameters (and vice versa). Therefore,
all of the for loops in the above pseudocode can be carried out
in parallel, providing a substantial speed-up in training runtime.
Indeed, our implementation applies such parallelization.

3.4 Update Equations
As stated above, each factor in our approximate posterior can be
shown to be Gaussian. Thus, we describe the update steps in terms
of their sufficient statistic - namely the mean and the covariance or
variance of each factor in the approximate posterior.
1parameters are initialized randomly using a multivariate Gaussian with zero mean
and small variance (0.01).

User vectors update q(um ):
The posterior for each user vector is approximated with q(um )=

N

(
um ;µum ,Σum

)
, where themean µum and covariance Σum are given by:

Σum=

(
αu ·Id+2γ 2 ∑

n∈Dbm
λ(ξm,n)⟨vnv⊤n ⟩+ (9)

(1−γ )β ⟨κ2 ⟩
∑
n∈Ds

m
⟨vnv⊤n ⟩

)−1
,

and
µum =Σum

(
γ

∑
n∈Dbm

[
rmn−

1
2−2γ λ(ξm,n)⟨bn+bm ⟩

]
⟨vn ⟩+

(1−γ )β
∑
n∈Ds

m

[
⟨κ ⟩(smn−⟨ψ ⟩)−⟨κ2(bm+bn )⟩

]
⟨vn ⟩

)
.

Item vectors update q(vn ):
The posterior for each item vector is approximated with q(vn )=

N

(
vn ;µvn ,Σvn

)
, where the mean µvn and covariance Σvn are given

by:

Σvn =

(
αv ·Id+2γ 2 ∑

m∈Dbn
λ(ξm,n)⟨umu⊤

m ⟩+ (10)

(1−γ )β ⟨κ2 ⟩
∑
m∈Ds

n
⟨umu⊤

m ⟩

)−1
,

and

µvn =Σvn

(
γ

∑
m∈Dbn

[
rmn−

1
2−2γ λ(ξm,n)⟨bn+bm ⟩

]
⟨um ⟩+

(1−γ )β
∑
m∈Ds

n

[
⟨κ ⟩(smn−⟨ψ ⟩)−⟨κ2(bm+bn )⟩

]
⟨um ⟩

)
.

User biases update q(bm ):
The posterior for each user bias is approximated with
q(bm )=N

(
bm ; µbm ,σ

2
bm

)
, where the mean µbm and variance σ 2

bm

are given by:

σ 2bm=
(
2γ 2 ∑

n∈Dbm
λ(ξm,n)+(1−γ )β ⟨κ2 ⟩ |Ds

m |+αbm
)−1

, (11)

and
µbm=σ

2
bm

·

(
γ

∑
n∈Dbm

(rmn−
1
2−2γ λ(ξm,n)⟨v⊤num+bn ⟩)+

(1−γ )β
∑
n∈Ds

m (⟨κ ⟩(smn−⟨ψ ⟩)−⟨κ2(v⊤num+bn )⟩)

)
where |Ds

m | is the number of observations in Ds
m .

Item biases update q(bn ):
The posterior for each user bias is approximatedwith q(bn )=N

(
bn ;µbn ,σ

2
bn

)
,

where the mean µbn and variance σ 2
bn

are given by:

σ 2bn=
(
2γ 2 ∑

m∈Dbn
λ(ξm,n)+(1−γ )β ⟨κ2 ⟩ |Ds

n |+αbn
)−1

, (12)

and
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µbn=σ
2
bn

·

(
γ

∑
m∈Dbn

(rmn−
1
2−2γ λ(ξm,n)⟨v⊤num+bm ⟩)+

(1−γ )β
∑
m∈Ds

n (⟨κ ⟩(smn−⟨ψ ⟩)−⟨κ2(v⊤num+bm )⟩)

)
where |Ds

n | is the number of observations in Ds
n .

Updating the stretch scale parameter q(κ):
The posterior for κ is approximated with q(κ)=N(κ ;µκ ,σ 2

κ ), where
the mean µκ and variance σ 2

κ are given by:

σ 2κ=

(
(1−γ )β

∑
Ds ⟨(u⊤

mvn+bm+bn)
2
⟩+ακ

)−1
, (13)

and
µκ=σ

2
κ ·

(
ακ+(1−γ )β

∑
Ds (smn−⟨ψ ⟩)⟨u⊤

mvn+bm+bn ⟩

)
.

Updating the stretch location parameter q(ψ ):
The posterior forψ is approximated with q(ψ )=N

(
ψ ;µψ ,σ 2

ψ

)
, where

the mean µψ and variance σ 2
ψ are given by:

σ 2ψ =

(
(1−γ )β |Ds |+αψ

)−1
, (14)

and
µψ =σ

2
ψ ·

(
(1−γ )β

∑
Ds (smn−⟨κ ⟩ ⟨u⊤

mvn+bm+bn ⟩)

)
,

where |Ds | is the number of observations in Ds .

Update for variational parameters
As explained in Section 3.3.1, we are optimizing a lower bound on
the logistic free energy Fξ [q(θ )] which includes variational parame-
ters ξm,n . These parameters are computed as needed (on the fly)
according to:

ξm,n=γ
√
VAR[u⊤

mvn]+σ 2
bm
+σ 2

bn
+(µ⊤um µvn+µbm+µbn )

2
. (15)

3.5 Negative Sampling
Implicit data recommenders, such as in this work, often form one-
class problems [24]. Our approach adopts ‘negative sampling’ to
deal with this issue - a strategy popular in the implicit data paradigm
of recommendation systems [16, 23, 24, 26] as well as other areas of
machine learning (most notably for learning word embeddings[20]).
The approach entails augmenting the positive data in the training
dataset with additional data representing examples that have neg-
ative labels (i.e. items disliked by the user in a recommendation
scenario).

Recall that, the training data Db and Ds includes both binary
and continuous observations. Thus, the augmenting ‘negative’ data
points should also contain a binary and continuous component.
Clearly the binary component should be set to 0, however it is not
clear what is the correct value of the continuous component. We
opted for the following negative sampling scheme: for each user we
sample a number of items equal to the number of items available
in the training data (i.e. ‘user positive examples’). The choice of
item is done uniformly across all catalog items excluding those

‘positive items’. That is, we select item n as a negative for userm
with probability:

P(Userm dislikes Item n) =


1(

N−
��Db

m
��) n < Db

m

0 n ∈ Db
m

(16)

For the sampled item n, we add rmn = 0 to Db and smn = −1 to
Ds . The motivation for this choice is to create a stark separation
between the scores observed in the data (which are all positive) and
the scores sampled as part of the data augmentation.

Although adding negative sampling has significant impact on the
performance of the approach (see results in Section 4), the method
is fairly robust to the specifics of how the negative sampling is
carried out. We experimented with a number of such schemes and
found no major differences in the results, and hence we opted for a
straightforward approach.

3.6 Prediction Using the Learned Model
As explained earlier, unlike other algorithms (e.g., Expectation Max-
imization) that use point-estimates of the parameters, Variational
Bayes estimates the full posterior distribution. Namely, we approx-
imated the posterior p(θ |D,H) with q(θ ). At prediction time, we
compute expectations over all possible values of the parameters
according to q(θ ) which gives a prediction that is more robust to
over-fitting, under-fitting and general modeling choices such as
hyper-parameters.

Our model is a multi-task model capable of two types of pre-
dictions: the predicted binary probability (e.g., the probability for
buying an item) and the expected satisfaction score (e.g., how much
time the user will spend playing the game after purchasing it).
The exact utilization of these two predictions varies according to
the company’s business needs and is out of scope for this paper,
however combining these two types of predictions allow power-
ing interesting scenarios such as choosing items that the user is
both likely to purchase and enjoy after purchasing. These two pre-
dictions values can also be used as features by a second layer of
learning in order to solve the list recommendation problem [30].

Binary Signal Prediction:
We predict the probability for a positive signal by computing the
following expectation:

p(rmn=1 |D,H)≈

〈
σ
(
γ (u⊤

mvn+bm+bn)
)〉

(17)

≈

∫
σ (a)N(a;µa,σ 2

a)da,

where adef
=γ (u⊤

mvn+bm+bn) is approximated with a Gaussian using
its first and second moments according to q(θ ):

µa=
〈
γ (u⊤

mvn+bm+bn)
〉

(18)

σ 2
a=

〈
(γ (u⊤

mvn+bm+bn)−µa)
2
〉
.

The integral in Equation 17 is non-analytical and, thus, approxi-
mated with ∫

σ (a)N(a;µa,σ 2
a)da≈σ

(
µa/

√
1+πσ 2

a/8
)
, (19)

which follows MacKay [18].
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Dataset # Users # Items # Data Points
Xbox Games 100,000 596 1,409,332
Windows Games 10,000 1,000 57,778
LastFM 9,982 1,000 234,089
MovieLens 6040 3,681 1,001,80

Table 1: Dataset statistics

Continuous Signal Prediction:

The continuous score is predicted by approximating the expected
score µs as follows:

µs
def
=

∫
s ·p(smn=s |D,H)ds≈

〈
κ(u⊤

mvn+bm+bn)+ψ
〉
. (20)

4 EVALUATION
We evaluate several variants of our model against popular baselines
for related problems from the literature. We used several datasets
representing different types of on-line retail products across both
proprietary and publicly available data.

4.1 Datasets
Evaluations are based on four datasets: Xbox games, Windows
games (WinGames), LastFM [1], and MovieLens (1M) [6]. The Xbox
games and WinGames datasets are proprietary datasets from com-
mercial stores. These datasets were constructed by sampling a fixed
size of users uniformly. As such, the patterns represent real us-
age patterns. The binary signal is the purchase signal and we use
engagement time as a proxy for satisfaction. Namely, the implicit
satisfaction score is based on some proprietary combination of the
absolute time spent playing the game and the number of times
the game was launched. These domains are a bit different from
one another: In the Xbox domain most games are purchased for
a non-negligble monetary amount, but in WinGames most games
are downloaded at little (or no) monetary cost. We thus expect
the implicit binary signal to be much weaker in determining user
preferences in WinGames.

LastFM [1] is a publicly available dataset of musical playlists. It
gives a natural continuous implicit preference signal- the number
of times a particular artist was heard by the user. MovieLens (1M)
[6] is a publicly available dataset in which explicit ratings are used
as a measure of user satisfaction. It was chosen because numer-
ous relevant methods were evaluated using this type of data. All
continuous signals were normalized using min-max normalization
before training the models. The statistics of each of the datasets are
presented in Table 1.

4.2 Evaluation Metrics
We evaluate using several well known metrics, defined below:

RMSE
√

1
|Ts |

∑
(m,n)∈Ts (smn − ŝmn )

2

Precision@k 1
|MT |

∑
m∈MT

∑
n∈Ts

m
I[Rank(m,n)<=k]

k

Recall@k 1
|MT |

∑
m∈MT

∑
n∈Ts

m
I[Rank(m,n)<=k]

|Ts
m |

MPR 1 −
(

1
|MT |

∑
m∈MT

ARank(m)
N

)

where T s is our test dataset of scores, smn is the (ground truth)
score observed for user m on item n, and ŝmn is the estimated
rating predicted by our algorithm for user m on item n. MT de-
notes the set of test users in our test set and T s

m denotes the set
of test items relevant to user m. Rank (m,n) denotes the rank of
item n by using the model to rank all catalog items for user m.
ARank (m) = 1

|Ts
m |

∑
n∈Ts

m
Rank (m,n) is the average rank for test

items associated with userm. I [·] denotes the indicator function.
Note that our method for computing MPR means that higher mea-
surements a correspond to better performance.

4.3 Baseline Models
Evaluations are provided against several well-known baselines from
the literature. For each algorithm, we conducted an exhaustive
grid search across the hyper-parameter space, the values reported
below represent the best configuration of hyper-parameters for
each method.

(1) Our Model- This is the model proposed in Section 3, which
uses a dual task objective and learns the posterior over
user/item vector and bias parameters and additional stretch
parameters, κ andψ (which control location and scale of the
continuous valued scores) from data.

(2) Score Weighted Regression (SWR)- In this baseline we
implement the approach of Hu et al. [10], which uses the im-
plicit continuous signal to give additional weight to squared
error terms in the optimization objective corresponding to
positive data points. Using decomposition properties of the
model an efficient algorithm is able to consider all negative
data points rather than sampling as in our approach.

(3) Explicit Continuous Signal Regression (ECSR)- In this
baseline we treat the implicit signals as if they were explicit.
That is, we ignore the fact that no continuous signals are
available for items the user has not consumed. This baseline
is equivalent to our model with γ = 0 and without sampling
of negatives. It is also equivalent to the probabilistic matrix
factorization model of Salakhutdinov and Mnih [29].

(4) Popularity Model (Pop) - In this naive baseline we sim-
ply recommend the most popular items in the training data
for all users (excluding those items already installed by the
user). This baseline lacks the personalization expected from
real-world recommendation systems. However, many retail
scenarios exhibit strong skew towards popular item and in
such a scenario this baseline can outperform other, more
complex, models in ranking metrics.

(5) Bayesian Personalized Ranking (BPR) - This baseline
implements the approach of Rendle et al. [26], which deals
with the one-class nature of recommendation data by sam-
pling negative items for each user. In contrast to our method,
BPR optimizes a pairwise ranking objective which seeks
parameters that yield a large difference in scores between
positive and negative items.

4.4 Results and Discussion
We evaluate ourmodel and baselines on both ranking and prediction
metrics. Ranking metrics quantify how well the model was able to
predict the purchase of held out items. Prediction metrics quantify
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Figure 1: The figure illustrates the tradeoff between ranking performance (measured in MPR) and prediction performance
(measured in RMSE). A scenario that wants to maximize customers’ post-purchase satisfaction in addition to predicting which
items will be purchased requires a model that achieves high MPR and low RMSE.

how well it was able to predict the satisfaction score of held-out
items.

Table 2 shows the results of our empirical evaluation. We can
see that our method performs well w.r.t to the baselines across the
various ranking metrics and datasets. We conclude that using the
multi-task objective and corresponding algorithm allows for im-
proved recommendations in terms of showing more items that are
expected to be purchased by the user. When it comes to predicting
the satisfaction score, the ECSR baseline outperforms all others on
RMSE. This result is not surprising as ECSR directly optimizes this
metric. The table shows our model is a close second to ECSR on
this metric across all datasets.

Our motivating scenarios seek to strike a balance between rank-
ing and prediction performance. Figure 1 visualizes this trade-off
by plotting each of our baselines in the space of RMSE vs MPR. A
method that achieves a good tradeoff would appear in the upper-left
quadrant of this plot. Examining this figure, we can observe that
even for datasets where our methods were not able to achieve the
top performance in one of the metrics (e.g. MPR in the MovieLens
dataset), the achieved tradeoff dominates the other methods.

In addition to summary metrics, which give an average perfor-
mance picture, it is instructive to examine the impact that making

use of the continuous customer satisfaction signal has on user in-
teraction with the recommendation system . Tables 3 and 4 show
some anecdotal examples of this kind of user impact. Here, we
present the top ranking items that would be shown to a user who
purchased a single item. This scenario is sometimes used to com-
pute “Item to Item" similarities. In the first table we see how Forza
Motorsport 6 (a car racing game) is linked to general sports titles if
continuous satisfaction scores are not considered but linked more
closely to other racing games once we refine the model with this
additional signal. Similarly in theWindows Games domain, popular
title Cut the Rope is grouped with other popular Windows games
when satisfaction scores are ignored but considering these scores
allows us to discover a finer granularity of similar games, for in-
stance the sequel game Cut the Rope 2. These examples suggest
that by carefully considering user satisfaction or engagement, the
multi-task model learns a more accurate latent space which leads to
improved ranking results in the binary task. From this interesting
observation and from earlier results we conclude that even when
we only care about the binary problem, user satisfaction can serve
as “side information”.

Finally, we show that making use of the user satisfaction signal
leads to better results in recommending unpopular ("cold") items.
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Ranking Metrics Error Metric
(Higher is better) (Lower is better)

Model Variant P@10 R@10 MPR RMSE
LastFM Dataset

BPR 0.011 0.023 0.597 1.038
ECSR 0.007 0.015 0.546 0.998∗

Pop 0.033 0.063 0.681 -
SWR 0.064 0.148 0.858 3.700
Our Model 0.070∗ 0.145 0.880∗ 1.011

MovieLens Dataset
BPR 0.039 0.016 0.786 3.750
ECSR 0.052 0.025 0.766 0.852∗

Pop 0.101 0.050 0.842 -
SWR 0.136∗ 0.080∗ 0.909∗ 59.343
Our Model 0.121 0.068 0.903 1.154

WinGames Dataset
BPR 0.007 0.035 0.744 1.101
ECSR 0.003 0.014 0.655 0.438∗

Pop 0.041 0.227∗ 0.821 -
SWR 0.031 0.161 0.763 2.850
Our Model 0.045∗ 0.218 0.868∗ 0.557

Xbox Dataset
BPR 0.007 0.034 0.518 1.500
ECSR 0.013 0.052 0.607 1.056∗

Pop 0.043 0.214 0.825 -
SWR 0.040 0.196 0.809 1.201
Our Model 0.048∗ 0.249∗ 0.879∗ 1.128

Table 2: A comparison of our proposed model across 4
datasets and several metrics. ∗ denotes statistical signifi-
cance at the 0.01 level. Our model consistently leads in MPR
and comes in a close second to ECSR in RMSE. See Figure
1 for a visualization of the trade-off between ranking and
prediction.

Seed Results w/ Score Signal Results w/o Score Sig-
nal

Forza Motorsport 6 Forza Horizon 2 EA SPORTS FIFA 16
Project CARS Forza Horizon 2
Forza Motorsport 5 Just Dance 2016
Need for Speed RIDE
The Crew Project CARS

Gears of War: Judgment Gears of War 3 Gears of War 3
Gears of War: Ultima... Gears of War 2
Gears of War 2 Gears of War: Ultima...
Halo: Reach Halo: Reach
Gears of War Gears of War

Plants vs. Zombies 2 Plants vs. Zombies LEGO Dimensions
Unravel LEGO Jurassic Worl...
Batman: Arkham Kn... Disney Infinity 3.0 ...
ROBLOX The LEGO Movie Video...
Need for Speed Just Dance 2016

Table 3: Anecdotal item similarities for Xbox Games

Figure 2 plots the MPR when considering only the least popular
items in the test set. The plot is cumulative in the sense that bin
2 considers all the items in bin 1 and so on. Examining the plot
we conclude that applying our model to consider user satisfaction
signals yields improved recommendation performance (asmeasured

Seed Results w/ Score Signal Results w/o Score Sig-
nal

Shopping Cart Hero 3 Jetpack Joyride Guns 4 Hire
Endless Skater Jetpack Joyride
Block World Offroad Racing
Nyan Cat The Game Drift Mania Champion...
Drift Mania Champion... Zombie HQ

Cut The Rope Angry Gran Run Judge Dredd vs. Zomb...
Cut the Rope 2 Jetpack Joyride
Jetpack Joyride Agent P Strikes Back...
Agent P Strikes Back... Parking Mania
Wo ist mein Wasser? ... Wo ist mein Wasser? ...

FarmVille 2 Logo Quiz Game Alles steht Kopf Eri...
Cloud Raiders Crossy Road
The Tribez My Talking Tom
2020: My Country Dragon Mania Legends...
Dragon Mania Legends... Cut the Rope 2

Table 4: Anecdotal item similarities for Windows Games

0.5

0.6

0.7

0.8

0.9

Item Popularity Bin

M
PR

w/ Score Signal
w/o Score Signal

Figure 2: MPR of the model on the Xbox Games dataset as
increasingly popular items in the test set are considered. Un-
popular or "cold" items are harder to predict. However, con-
sidering the user satisfaction score improves recommenda-
tion performance on cold items.

by MPR) across all item subsets considered including the regime of
very "cold" items.

5 CONCLUSION
In this work, we propose a multi-task Bayesian model which com-
bines binary purchase or click signals with continuous satisfaction
scores. We propose an efficient parallelizable algorithm to estimate
the model parameters using the Variational Bayes framework. Our
evaluations demonstrate that the proposed model strikes a desired
balance between maximizing immediate purchase probability with
long term user satisfaction. Interestingly, in some cases the user
satisfaction or engagement scores serve as “side information” which
help achieve more accurate purchase probabilities. We believe that
applying methods similar to those proposed herein, has the poten-
tial to improve customer experience for millions of users relying
on such recommendation services.
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